Bistability analyses of a caspase activation model for receptor-induced apoptosis.
نویسندگان
چکیده
Apoptosis is an important physiological process crucially involved in development and homeostasis of multicellular organisms. Although the major signaling pathways have been unraveled, a detailed mechanistic understanding of the complex underlying network remains elusive. We have translated here the current knowledge of the molecular mechanisms of the death-receptor-activated caspase cascade into a mathematical model. A reduction down to the apoptotic core machinery enables the application of analytical mathematical methods to evaluate the system behavior within a wide range of parameters. Using parameter values from the literature, the model reveals an unstable status of survival indicating the need for further control. Based on recent publications we tested one additional regulatory mechanism at the level of initiator caspase activation and demonstrated that the resulting system displays desired characteristics such as bistability. In addition, the results from our model studies allowed us to reconcile the fast kinetics of caspase 3 activation observed at the single cell level with the much slower kinetics found at the level of a cell population.
منابع مشابه
CASPASE DEPENDENT APOPTOSIS INDUCED BY CLADRIBINE IN THE ESTROGEN RECEPTOR NEGATIVE BREAST CANCER CELL LINE, MDA-MB468
The purpose of the present study is to investigate the cytotoxicity/apoptotic effect of 2-chloro-2′-deoxyadenosine, cladribine, (2-CdA) in the human breast cancer cell line, MDA-MB468 (estrogen receptor negative, ER−). MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide] assay, annexin V-Fluorescein/PI and Hoechst 33258 staining were used to detect cytotoxicity and cell apopto...
متن کاملPossible Involvement of a Specific Cell Surface Receptor for Calprotectin-Induced Apoptosis in Colon Adenocarcinoma and Carcinam Cell Lines (SW742 and HT29/219)
Calprotectin, a calcium-bound protein complex, is abundant in the cytosol of neutrophils. It has been reported that this protein has an apoptotic activity in tumor cells. Since calprotectin increases in colorectal cancer, this study was conducted to investigate, for the first time, the cytotoxicity/apoptotic effect of calprotectin on HT29/219 and SW742 colon carcinoma and adenocarcinoma cell li...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMathematical Modeling Identifies Inhibitors of Apoptosis as Mediators of Positive Feedback and Bistability
The intrinsic, or mitochondrial, pathway of caspase activation is essential for apoptosis induction by various stimuli including cytotoxic stress. It depends on the cellular context, whether cytochrome c released from mitochondria induces caspase activation gradually or in an all-or-none fashion, and whether caspase activation irreversibly commits cells to apoptosis. By analyzing a quantitative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 35 شماره
صفحات -
تاریخ انتشار 2004